
P
A
G

E
 0

1

SAMPLE SECURITY
ASSESSMENT CHECKLIST
for Smart Contract based Applications

W W W . N E T S E N T R I E S . C O M

As the Blockchain-based solutions are immutable, the elements deployed with smart contracts
remains permanent with no option to reverse the action unless chosen to destroy the smart
contract or create a proxy contract with a pseudo upgrade. Additionally, as the exploitation of
security vulnerabilities in smart contracts-based applications often results in significant financial
impact, tracing (after an attack) becomes a tedious task and challenges the patching or
workarounds.

To help our enterprise customers effectively assess the inherent and associated security risks
related to the development, adoption, and deployment of Blockchain-based applications and
services, NST Cyber Consultants have rolled-out a curated sample list of audit checklists that can
be used as a base reference standard. These audit questions are meticulously prepared based
on recommendations from standards like NIST, Smart Chain Verification Standard (SCVS). NST
Cyber also includes it rich industry experience, learnings from real-world attacks against
Blockchain-based systems, and general secure coding practices into the checklist. Some of the
security controls listed may not be directly applicable to all use cases as validation methods tend
to vary based on application type and design. However most of controls can be seamlessly
applied to Layer 1 Blockchain protocols, Layer 2 channels, and Smart contract-based
applications or services (DeFi).

Layer 1 - Covers Blockchain protocols like Bitcoin Core or Geth.
Layer 2 - Facilitates efficient transactions using micropayment channels.
Smart Contracts – Complies with the general contractual conditions of Blockchain-based
systems, such as charges, payment terms, enforcement, and confidentiality. Smart
contracts are used heavily for developing decentralized applications.
Custodial or Non-custodial software wallets
Hardware wallets for storing private keys
Mining Software
Centralized and Decentralized Exchanges

Until recent times, Cryptocurrency was the only prominent use case of Blockchain. Emergence
of Decentralized financing solutions such as lending or crowdfunding applications, Digital
Identity solutions, NFT based art and collectibles, supply chain applications, Anti-piracy
solutions, real estate software, and Gaming Applications in the market has made it apparent
that Blockchain is more than just Cryptocurrency. Several elements in the Blockchain
ecosystem need attention from a security perspective which essentially includes the following:

P
A
G

E
 0

2
W W W . N E T S E N T R I E S . C O M

Sr.No Category

Blockchain Deployment Infrastructure Security

1
Ensure Blockchain solutions are separated by channels and namespaces are in
place, to ensure private communication between the members of a ledger and easy
management of assets

2 Ensure Endorsement policies are in place and adequately enforced, to aid security of
digital assets, Business associations, and contracts.

3

Ensure adequate Access Control mechanisms are in place. Access control should
follow the, 'Principle of least privilege', and, 'Need to know Principle' to ensure only
the required and rightful access is provided to any given authenticated user to a
service or data.

4

Ensure a standardised authorization mechanisms like Oauth, OIDC, SAML2, etc is
used, in case an organization is working as an Identity Supplier. Using custom
authentication, verification, and authorization mechanisms will lead to Access
Control Bypass due to improper implementation or code induced vulnerabilities.

5 Ensure HSMs are used to secure and manage Cryptographic keysand avoid leakage
of cryptographic keys.

6
Ensure Privilege Access Mechanisms are in place to monitor Privilege Access to the
servers/services to prevent inadvertent privileged access to an attacker or a normal
user.

7
Ensure APIs are secured from attacks mentioned in OWASP API Top 10 in addition to
contextual vulnerabilities, lack of incorporating security controls (Authentication,
Identfication ,and Authorization) will lead to unauthorized access/transaction.

8
Ensure Encryption of data at rest and data in transit of sensitive data such as keys,
tokens, certificates , to avoid compromise of sensitive information in case of a
compromise

9 Ensure Data Classification Controls are in place to adequately categorize data and
information in order to apply appropriate controls.

10
Ensure Privacy Preserving mechanisms such as Permissioned Ledgers are used, to
protect/hide the participating members' sensitive information related to
transactions.

11

Ensure periodic Vulnerability Assessment and Penetration testing, and
Configuration reviews are conducted against the solution to identify any security
gaps and fix it,. before an attacker leverages the same. It is also recommended to
incorporate Secure Code Review concepts along with the CI/CD pipeline.

12 Ensure Trusted Platform Modules are used inorder to preserve privacy and chain
codes, and untampered execution of sensitive codes.

13 Ensure the entire channel is secured by TLSv1.2 and above end-to-end, to avoid
leakage of sensitive data while in transit

14 Ensure Security standards, policies and procedures are in place to ensure
consistency and operational efficiency.

15
Ensure a robust mechanism is in place for handling and managing internal and
external TLS certificates to avoid certificate leakage and keeping the TLS
environment current.

P
A
G

E
 0

3
W W W . N E T S E N T R I E S . C O M

Sr.No Category

16

Ensure the presence of security controls built in to the application, to address
vulnerabilities mentioned in OWASP top 10 in addition to contextual vulnerabilities,
that could compromise the system and let an attacker to gain unauthorized access
and expose unintended permissions

17
Ensure the infrastructure housing the data and the solution is secured and
hardened as per industry security best practices, so as to ensure a consistent
operation and prevent attacks and compromises.

18
Ensure a legal framework and control is in place, hugging the organization's context,
inorder to prevent any deviation that might land the product/organization in a battle
to fight non-conformance to compliance standards/laws/guidelines

Smart Contract Application

19 Verify that no miner-influenced values like block hashes or timestamps are used as a
source of randomness in a smart contract.

20
Validate that no random numbers are stored in the contract until all lottery entries
are stored as any number that the contract could generate can potentially be
precalculated off-chain before the end of the block.

21 Verify that verifiable delay functions which produce pseudorandom number and
take a fixed amount of sequential time to evaluate are in use.

22
Verify that a commit reveal scheme is in use where users must stake wei to
participate. A decentralised autonomous organization with predefined participation
rules should be used in a contract to generate random numbers.

23 Verify that contracts that perform bulk transactions or updates are not using for loop
that can be DoS’d if a call to another contract or transfer fails during the loop.

24
Verify that while loops that exits when the gas drops below a threshold with an
iterator stored in a private variable is used to handle iterating over dynamically sized
data structure.

25 Validate that a mechanism that favour pull over push is used for external calls.

26 Validate that contracts cannot be forced to receive ether without triggering any
code.

27 Verify that proper checks are implemented to handle the increases in balances of
contracts.

28 Verify that all bookkeeping state variables before transferring execution to an
external contract are updated effectively to prevent chances of reentrancy attacks.

29
Validate the chance of an attacker performing reentrancy attacks using a fallback
option after transfer to execute the vulnerable function again before the state
variable change (with call. value).

30
Validate that, contracts do not define functions with a different type of signature
than the implementation, causing two different method id's to be created which
results in the fallback method to be executed when an interface is called.

31 Verify that type signatures are identical between interfaces and implementations.

32 Validate that, arithmetic methods used in a contract does not cause overflow or
underflow (add and sub can cause overflow/underflow on any type of integers).

33 Verify that pop methods used in dynamic arrays in a contract are safe as attackers
could underflow the length of an array to alter other variables in a contract.

P
A
G

E
 0

4
W W W . N E T S E N T R I E S . C O M

Sr.No Category

34 Validate that users can only approve transactions when the requires who requires
approval is approved for 0 tokens.

35
Verify that the gap in creation of a transaction and the time when it is accepted in
the blockchain does not help attackers to put contracts in state that take advantage
of it.

36
Verify that ERC20 standard's approve and transfer form functions which are
vulnerable to a race condition is used with mechanisms to mitigate the race
condition.

37
Verify the risk from unchecked external calls in smart contracts and validate the
effectiveness of process-level controls for prevention like manual validation and code
level practices (Eg: Use of address.transfer()).

38 Validate that all modifiers on a functions are specific and in use to avoid contracts
being modified by attackers.

39 Validate that variables declared within a certain scope (decision block, method, or
inner class) are not named same as variables in outer scope.

40
Verify the use of ‘named’ constructor (ensure the existence of unnamed
“constructor”) which may act as a runtime bytecode instead of a constructor that an
attacker can use for changing the state variables initialized in the function.

 Layer 1/Consensus Protocol

41 Validate that Historical Weighted Difficulty based Proof of work mechanisms are in
place to protect the consensus Protocol.

42 Verify that Random Mining Group Selection based mechanisms are in place to
protect the consensus Protocol against 51% Attack.

43 Verify that Indegree and Outdegree based mechanisms are in place to protect the
consensus Protocol against Eclipse Attack.

44 Verify that Self-Registration based mechanisms are in place to protect the
consensus Protocol against Sybil Attack.

45 Validate that Backward-Incompatible Defense mechanisms are in place to protect
the consensus Protocol.

46 Verify that Tie Breaking Defense based mechanisms are in place to protect the
consensus protocol against Selfish Mining Attack.

47 Verify that Dynamic and Auto Responsive Approach is used to protect the
consensus protocol against DDoS Attack

 Layer 1/Sharding Protocol

48

Verify that proper mechanisms to prevent against shrad attacks are in place. A
potential shrad attack may be prevented by randomly assigning nodes to certain
shards and constantly reassigning them at random intervals. This random sampling
would make it difficult for hackers to know when and where to corrupt a shard.

SCVS - Architecture, Design and Threat Modeling

49 Verify that the every introduced design change is preceded by an earlier threat
modelling.

50 Verify that the documentation clearly and precisely defines all trust boundaries in
the contract (trusted relations with other contracts and significant data flows).

P
A
G

E
 0

5
W W W . N E T S E N T R I E S . C O M

Sr.No Category

51 Verify that the SCSVS, security requirements or policy is available to all developers
and testers.

52 Verify that there exists an upgrade process for the contract which allows to deploy
the security fixes or it is clearly stated that the contract is not upgradeable.

53 Verify that the events for the (state changing/crucial for business) operations are
defined

54 Verify that there is a component that monitors the contract activity using events.

55
Verify that there exists a mechanism that can temporarily stop the sensitive
functionalities of the contract in case of a new attack. This mechanism should not
block access to the assets (e.g. tokens) for the owners.

56 Verify that there is a policy to track new security bugs and to update the libraries to
the latest secure version.

57 Verify that the value of cryptocurrencies kept on contract is controlled and at the
minimal acceptable level.

58 Verify that if the fallback function can be called by anyone it is included in the threat
modelling.

59 Verify that the business logic in contracts is consistent. Important changes in the
logic should be allowed for all or none of the contracts.

60 Verify that code analysis tools are in use that can detect potentially malicious code.

61 Verify that the latest version of the major Solidity release is used.

62 Verify that, when using the external implementation of contract, you use the current
version which has not been superseded.

63 Verify that there are no vulnerabilities associated with system architecture and
design.

SCVS - Access Control

64 Verify that the principle of least privilege exists, other contracts should only be able
to access functions and data for which they possess specific authorization.

65
Verify that new contracts with access to the audited contract adhere to the principle
of minimum rights by default. Contracts should have a minimal or no permission
until access to the new features is explicitly granted.

66 Verify that the creator of the contract complies with the rule of least privilege and
their rights strictly follow the documentation.

67
Verify that the contract enforces the access control rules specified in a trusted
contract, especially if the dApp client-side access control is present (as the client-side
access control can be easily bypassed).

68 Verify that there is a centralized mechanism for protecting access to each type of
protected resource.

69 Verify that the calls to external contracts are allowed only if necessary.

70 Verify that visibility of all functions is specified.

71 Verify that the initialization functions are marked internal and cannot be executed
twice.

72 Verify that the code of modifiers is clear and simple. The logic should not contain
external calls to untrusted contracts.

P
A
G

E
 0

6
W W W . N E T S E N T R I E S . C O M

Sr.No Category

73 Verify that the contract relies on the data provided by right sender and contract
does not rely on tx.origin value.

74
Verify that all user and data attributes used by access controls are kept in trusted
contract and cannot be manipulated by other contracts unless specifically
authorized.

75 Verify that the access controls fail securely including when a revert occurs.

76 Verify that there are no vulnerabilities associated with access control.

SCVS - Blockchain Data

77 Verify that any data saved in the contracts is not considered safe or private (even
private variables).

78 Verify that no confidential data is stored in the blockchain (passwords, personal data,
token etc.).

79
Verify that the list of sensitive data processed by the smart contract is identified, and
that there is an explicit policy for how access to this data must be controlled and
enforced under relevant data protection directives.

80 Verify that there is a component that monitors access to sensitive contract data
using events.

81 Verify that contract does not use string literals as keys for mappings. Verify that
global constants are used instead to prevent Homoglyph attack.

82 Verify that there are no vulnerabilities associated with blockchain data.

SCVS - Communications

83 Verify that libraries which are not part of the application (but the smart contract
relies on to operate) are identified.

84 Verify that contract does not use hard-coded addresses unless necessary. If the hard
coded address is used, make sure that its contract has been audited.

85 Verify that contracts and libraries which call external security services have a
centralized implementation.

86 Verify that delegatecall is not used with untrusted contracts.

87 Verify that re-entrancy attack is mitigated by blocking recursive calls from other
contracts. Do not use call and send function unless it is a must.

88 Verify that the result of low-level function calls (e.g. send, delegatecall, call) from
another contracts is checked.

89 Verify that third party contracts do not shadow special functions (e.g. revert).

90 Verify that there are no vulnerabilities associated with communications.

SCVS - Arithmetic

91 Verify that the values and math operations are resistant to integer overflows. Use
SafeMath library for arithmetic operations before solidity 0.8.*.

92 Verify that the unchecked code snippets from Solidity 0.8.* do not introduce integer
under/overflows.

93 Verify that the extreme values (e.g. maximum and minimum values of the variable
type) are considered and does change the logic flow of the contract.

P
A
G

E
 0

7
W W W . N E T S E N T R I E S . C O M

Sr.No Category

94 Verify that non-strict inequality is used for balance equality.

95 Verify that there is a correct order of magnitude in the calculations.

96 Verify that in calculations, multiplication is performed before division for accuracy.

97 Verify that there are no vulnerabilities associated with arithmetics.

SCVS - Malicious input handling

98 Verify that if the input (function parameters) is validated, the positive validation
approach (allowlisting) is used where possible.

99 Verify that the length of the address being passed is determined and validated by
smart contract.

100 Verify that there are no vulnerabilities associated with malicious input handling.

SCVS - Gas usage & limitations

101
Verify that the usage of gas in the smart contract is anticipated, defined and has
clear limitations that cannot be exceeded. Both, code structure and malicious input
should not cause gas exhaustion.

102
Verify that two types of the addresses are considered when using the send function.
Sending Ether to the contract address costs more than sending Ether to the
personal address.

103 Verify that the contract does not iterate over unbound loops.

104 Verify that the contract does not check whether the address is a contract
using extcodesize opcode.

105 Verify that the contract does not generate pseudorandom numbers trivially basing
on the information from blockchain (e.g. seeding with the block number).

106 Verify that the contract does not assume fixed-point precision but uses a multiplier
or store both the numerator and denominator instead.

107 Verify that, if signed transactions are used for relaying, the signatures are created in
the same way for every possible flow to prevent replay attacks.

108 Verify that there exists a mechanism that protects the contract from a replay attack
in case of a hard-fork.

109 Verify that all library functions that should be upgradeable are not internal.

110 Verify that the external keyword is used for functions that can be called externally
only to save gas.

111 Verify that there is no hard-coded amount of gas assigned to the function call (the
gas prices may vary in the future).

112 Verify that there are no vulnerabilities associated with gas usage & limitations.

SCVS - Business logic

113 Verify that the contract logic implementation corresponds to the documentation.

114
Verify that the business logic flows of smart contracts proceed in a sequential step
order and it is not possible to skip any part of it or to do it in a different order than
designed.

115 Verify that the contract has business limits and correctly enforces it.

P
A
G

E
 0

8
W W W . N E T S E N T R I E S . C O M

Sr.No Category

116 Verify that the business logic of contract does not rely on the values retrieved from
untrusted contracts with multiple calls of the same function.

117 Verify that the contract logic does not rely on the balance of contract (e.g. balance ==
0).

118 Verify that the sensitive operations of contract do not depend on the block data (i.e.
block hash, timestamp).

119 Verify that the contract uses mechanisms that mitigate transaction-ordering
dependence (front-running) attacks (e.g. pre-commit scheme).

120 Verify that the contract does not send funds automatically but it lets users withdraw
funds on their own in separate transaction instead.

121 Verify that the inherited contracts do not contain identical functions or the order of
inheritance is carefully specified.

122
Verify that the business logic does not compare the extcodehash return value with 0
to check whether another address is contract (the hash of empty data is returned in
such case).

123 Verify that there are no vulnerabilities associated with business logic.

SCVS - Denial of service

124 Verify that the self-destruct functionality is used only if necessary. If it is included in
the contract, it should be clearly described in the documentation.

125 Verify that the business logic does not block its flows when any of the participants is
absent forever.

126 Verify that the contract logic does not disincentivize users to use contracts (e.g. the
cost of transaction is higher that the profit).

127 Verify that the expressions of functions assert or require to have a passing variant.

128
Verify that if the fallback function is not callable by anyone, it is not blocking the
functionalities of contract and the contract is not vulnerable to Denial of Service
attacks.

129 Verify that the function calls to external contracts (e.g. send, call) are not the
arguments of require and assert functions.

130 Verify that the function declarations are callable by the used compiler version (see
the Uncallable function example link below).

131 Verify that there are no vulnerabilities associated with availability.

SCVS - Token

132 Verify that the token contract follows a tested and stable token standard.

133 Use the approve function from the ERC-20 standard to change allowed amount only
to 0 or from 0.

134 Verify that the contract does not allow to transfer tokens to zero address.

135 Verify that the re-entracy attack has been considered when using the token
contracts with callbacks (e.g. ERC-777).

136 Verify that the transfer business logic is consistent, especially when re-sending
tokens to the same address (msg.sender == destination).

P
A
G

E
 0

9
W W W . N E T S E N T R I E S . C O M

Sr.No Category

137 Verify that there are no vulnerabilities associated with Token.

SCVS - Code clarity

139 Verify that the logic is clear and modularized in multiple simple contracts and
functions.

140 Verify that the inheritance order is considered for contracts that use multiple
inheritance and shadow functions.

141 Verify that the contract uses existing and tested code (e.g. token contract or
mechanisms like ownable) instead of implementing its own.

142 Verify that the same rules for variable naming are followed throughout all the
contracts (e.g. use the same variable name for the same object).

143 Verify that variables with similar names are not used.

144 Verify that all variables are defined as storage or memory variable.

145 Verify that all storage variables are initialised.

146
Verify that the constructor keyword is used for Solidity version greater than 0.4.24.
For older versions of Solidity make sure the constructor name is the same as
contract's name.

147 Verify that the functions which specify a return type return the value.

148 Verify that all functions are used. Unused ones should be removed.

149 Verify that the require function is used instead of the revert function in if statement.

150
Verify that the assert function is used to test for internal errors and
the require function is used to ensure a valid condition on the input from users and
external contracts.

151 Verify that assembly code is used only if necessary.

152 Verify that there is a description in the form of 1-2 short sentences of what the
contract is for at the beginning of the contract.

153
Verify that if the system uses a ready-made implementation of the contract, it has
been marked in the comment. If it contains changes from the original, those have
been specified.

SCVS - Test coverage

154 Verify that considered as sensitive functions of verified contract are covered with
tests in the development phase.

155 Verify that the implementation of verified contract has been checked for security
vulnerabilities using static and dynamic analysis.

156 Verify that the specification of smart contract has been formally verified.

157 Verify that the specification and the result of formal verification is included in the
documentation.

SCVS - Known attacks

158 Verify that the contract is not vulnerable to Integer Overflow and Underflow attacks.

 [5.1] Verify that the values and math operations are resistant to integer overflows. Use
SafeMath library for arithmetic operations.

P
A
G

E
 1
0

W W W . N E T S E N T R I E S . C O M

Sr.No Category

 [5.2] Verify that the extreme values (e.g. maximum and minimum values of the
variable type) are considered and does change the logic flow of the contract.

159 Verify that the contract is not vulnerable to Reentrancy attack.

 [4.5] Verify that the re-entrancy attack is mitigated by blocking recursive calls from
the other contracts. Do not use call and send functions unless it is a must.

160 Verify that the contract is not vulnerable to Access Control issues.

 [2.1] Verify that the principle of least privilege exists - other contracts should only be
able to access functions or data for which they possess specific authorization.

[2.2] Verify that new contracts with access to the audited contract adhere to the
principle of minimum rights by default. Contracts should have a minimal or no
permission until access to the new features is explicitly granted.

 [2.3] Verify that the creator of the contract complies with the rule of least privilege
and his rights strictly follow the documentation.

[2.4] Verify that the contract enforces the access control rules specified in a trusted
contract, especially if the dApp client-side access control is present (as the client-side
access control can be easily bypassed).

 [2.5] Verify that there is a centralized mechanism for protecting access to each type
of protected resource.

 [2.6] Verify that the calls to external contracts are allowed only if necessary.
 [2.7] Verify that visibility of all functions is specified.

 [2.8] Verify that the initialization functions are marked internal and cannot be
executed twice.

 [2.9] Verify that the code of modifiers is clear and simple. The logic should not
contain external calls to untrusted contracts.

 [2.10] Verify that the contract relies on the data provided by right sender and
contract does not rely on tx.origin value.

[2.11] Verify that all user and data attributes used by access controls are kept in
trusted contract and cannot be manipulated by other contracts unless specifically
authorized.

 [2.12] Verify that the access controls fail securely including when a revert occurs.

 [3.4] Verify that there is a component that monitors access to sensitive contract data
using events.

 [7.4] Verify that the contract does not check whether the address is a contract using
extcodesize opcode.

161 Verify that the contract is not vulnerable to Silent Failing Sends and Unchecked-
Send attacks.

 [4.6] Verify that the result of low-level function calls (e.g. send, delegatecall, call) from
another contracts is checked.

 [4.7] Verify that the third party contracts do not shadow special functions
(e.g. revert).

162 Verify that the contract is not vulnerable to Denial of Service attacks.
 [7.3] Verify that the contract does not iterate over unbound loops.

P
A
G

E
 1
1

W W W . N E T S E N T R I E S . C O M

Sr.No Category
 [9.1] Verify that the self-destruct functionality is used only if necessary.

 [9.2] Verify that the business logic does not block its flows when any of the
participants is absent forever.

 [9.3] Verify that the contract logic does not disincentivize users to use contracts (e.g.
the cost of transaction is higher that the profit).

 [9.4] Verify that the expressions of functions assert or require have a passing variant.

[9.5] Verify that if the fallback function is not callable by anyone, it is not blocking the
functionalities of contract and the contract is not vulnerable to Denial of Service
attacks.

 [9.6] Verify that the function calls to external contracts (e.g. send, call) are not the
arguments of require and assert functions.

163 Verify that the contract is not vulnerable to Bad Randomness issues.

 [7.5] Verify that the contract does not generate pseudorandom numbers trivially
basing on the information from blockchain (e.g. seeding with the block number).

164 Verify that the contract is not vulnerable to Front-Running attacks.

 [8.7] Verify that the contract uses mechanisms that mitigate transaction-ordering
dependence (front-running) attacks (e.g. pre-commit scheme).

165 Verify that the contract is not vulnerable to Time Manipulation issues.

 [8.6] Verify that the sensitive operations of contract do not depend on the block data
(i.e. block hash, timestamp).

166 Verify that the contract is not vulnerable to Short Address Attack.

 [6.2] Verify that the length of passed address is determined and validated by smart
contract.

167 Verify that the contract is not vulnerable to Insufficient Gas Griefing attack.

[7.1] Verify that the usage of gas in smart contracts is anticipated, defined and have
clear limitations that cannot be exceeded. Both, code structure and malicious input
should not cause gas exhaustion.

[7.2] Verify that two types of the addresses are considered when using the send
function. Sending Ether to contract address costs more than sending Ether to
personal address.

 [7.3] Verify that the contract does not iterate over unbound loops.

 [7.4] Verify that the contract does not check whether the address is a contract
using extcodesize opcode.

 [7.10] Verify that the external keyword is used for functions that can be called
externally only to save gas

SCVS - Decentralized Finance

168 Verify that the lender's contract does not assume its balance (used to confirm loan
repayment) to be changed only with its own functions.

169

Verify that the functions which change lender's balance and lend cryptocurrency are
non-re-entrant if the smart contract allows to borrow the main platform's
cryptocurrency (e.g. Ethereum). It blocks the attacks that update the borrower's
balance during the flash loan execution.

W W W . N E T S E N T R I E S . C O M

NetSentries Technologies, Techno Hub 2,Dtec, Dubai Silicon Oasis,
P.O. Box: 644945, Dubai, United Arab Emirates

info@netsentries.com+971-557391463 www.netsentries.com

Sr.No Category

170
Verify that the flash loan function can call only a predefined function on the receiver
contract. If it is possible, define a trusted subset of contracts to be called. Usually, the
sender (borrower) contract is the one to be called back.

171

Verify that the receiver's function that handles borrowed ETH or tokens can be called
only by the pool and within a process initiated by the receiver's owner or other
trusted source (e.g. multisig), if it includes potentially dangerous operations (e.g.
sending back more ETH/tokens than borrowed).

172

Verify that the calculations of the share in a liquidity pool are performed with the
highest possible precision (e.g. if the contribution is calculated for ETH it should be
done with 18 decimals precision - for Wei, not Ether). The dividend must be
multiplied by the 10 to the power of the number of decimals (e.g. dividend * 10**18 /
divisor).

173
Verify that the rewards cannot be calculated and distributed within the same
function call that deposits tokens (it should also be defined as non-re-entrant). That
protects from the momentary fluctuations in shares.

174

Verify that the governance contracts are protected from the attacks that use flash
loans. One possible security is to require the process of depositing governance
tokens and proposing a change to be executed in different transactions included in
different blocks.

175 Verify that, when using an on-chain oracles, the smart contract is able to pause the
operations based on the oracle's result (in case of oracle has been compromised).

176

Verify that the external contracts (even trusted) that are allowed to change the
attributes of the smart contract (e.g. token price) have the following limitations
implemented: a thresholds for the change (e.g. no more/less than 5%) and a limit of
updates (e.g. one update per day).

177
Verify that the smart contract attributes that can be updated by the external
contracts (even trusted) are monitored (e.g. using events) and the procedure of
incident response is implemented (e.g. the response to an ongoing attack).

178 Verify that the complex math operations that consist of both multiplication and
division operations firstly perform the multiplications and then division.

179
Verify that, when calculating conversion price (e.g. price in ETH for selling a token),
the numerator and denominator are multiplied by the reserves (see
the getInputPrice function in UniswapExchange contract as an example).

